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Abstract The model of plastic deformation in amorphous systems based on the concept of 
pointlike sVUcNral defects is investigated in the thre+dimensional case. The yielding limit is 
calculated and the propagation of shear bands is investigated. The relation between the svUchlral 
defects and the low-frequency localized vibration modes is also discussed. 
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1. Introduction 

If dealing with microscopic models of irreversible processes in the solid state (plastic 
deformation, melting and many other problems) the most effective approach often is to 
consider the solid body as an elastic continuum with a certain type of structural defect. 
Well known examples of this approach are the dislocation theory of plastic deformation in 
crystals [2], theory of phase transitions (melting) in crystals [3] and others. 

Such processes occur also in the glasses. The phenomena of plasticity in  usual glasses 
are observed preferably in the processes of fracture [4]. In polymer glasses, however, the 
general picture of plasticity is observed in regular conditions [5 ] .  Moreover, in both cases 
it is possible to see linea structures in the deformed specimen which resemble the shear 
bands known from the theory of plastic deformation in crystals. 

However, the attempt to consider the dislocation model of glass has not turned out to be 
successful [6]. The reason for the difficulties is that only in the case of a weakly disturbed 
crystal (i.e. if the long-range order is still conserved) is it possible to relate the real structure 
of  the specimen to a certain distribution of dislocations and to calculate their elastic energy. 
In the case of the glass, however, it is not straightforward either to define the topological 
defects (the topology is complicated) on to calculate the elastic field of any defect defined 
(long-range order is absent and it seems impossible to define values similar to Burgers or 
Frank vectors). 

proposed in [7, 81. The defects considered there are in fact chains of odd-numbered rings 
which either end on the surface or form closed loops. In this model the ‘ground state’ is 
the system with perfect topology (without odd-numbered rings). The elastic energy of a 
continuum with such defects has been calculated [7] in the semidilute approximation, i.e. in 
the case of large loops situated with comparatively small interloop distance. The field of 
the defect line is proposed to be of the same decrease rate as in the case of the dislocation 
(the latter is considered in the framework of the continual theory of elasticity without any 
connection with the microscopic structure of the solid). In such a sense the disclination 
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field is supposed to be ‘screened‘ by some dislocation disbibution. This approximation 
tums out to be very useful-it gives us an opportunity to explain the relaxation properties 
in the vicinity of the glass transition and some other experimental facts. 

However, for the case of the plastic deformation this approximation does not seem to be 
relevant. The problem is that in order to describe the plasticity we need either the motion 
mechanism for the structural defects (such as slip planes for the dislocations in crystals) or 
the possibility for the defects to appear in the system. Neither of these possibilities exist 
for large loops. The motion of any defect in the glass is constrained by large barriers-the 
‘easy motion’ directions are absent. The large loops also cannot appear-such processes 
need huge energy. The only topological defect which may appear in the glass at low 
temperature is a loop of small size, involving several spheres of coordination only. From 
the viewpoint of the theory of elasticity it should be treated as a pointlike defect. Such a 
structure pattem may be a candidate for a participation in the process of plasticity. 

There exist three groups of experimental facts which support the idea of pointlike 
structural defects responsible for the deformation processes in glasses. The first one is the 
experiment on bubble models of glass [9] which has demonstrated that the deformation 
is mainly concentrated in ‘small rings’ of the bubbles. The numerical simulation of a 
mechanical model of glass [IO] has shown that the deformation is concentrated in the 
regions with abnormally low number of contacts between particles. These ‘small rings’ 
or regions with low number of the contacts may serve as a basis for the idea of pointlike 
structural defects in the glass. 

The other important evidence of this concept is the well known set of anomalous 
thermal properties of glasses at low temperatures [ll]. The theoretical explanations of 
these phenomena involve the ‘low-frequency localized vibration modes’ or ’states with 
double-well potential’ which are responsible for these anomalies. The excitations of these 
modes give rise to the abnormal value and thermal dependence of the heat capacity and the 
scattering of regular phonons on these structures, i.e. to anomalies in the heat conductivity. 
Although these effects have been studied widely and for a long time [7, 11-13], their 
connection with the mechanical properties of the glass remains still unclear. 

On the other hand, the numerical simulation [12. 131 reveals localized vibration states 
in the 3D model of glass. It has been demonstrated [lZ, 131 that these states really exist 
and they are connected with local structures different significantly from the average one. 
Normally only one abnormal vibration mode (the preferable direction of atomic mobility) 
is peculiar for such a local structure pattern. 

The paper [l] was devoted to the construction of the model of plastic deformation in 
amorphous systems for the 2D case. This model was based on a concept of a structural 
defect similar to those developed in the present paper. The results of the 2D considerations 
tuned out to be consistent with the data of the numerical simulations concerning the shear 
bands propagation. However, for the treatment of physical experiment data the construction 
of 3D theory is very much desirable. Besides, the experimental evidence of the localized 
vibration states comparable to the numerical simulation data belong certainly to the three- 
dimensional case only. The construction of 3D theory is the main goal of present paper. 

The structure of this paper is as follows. In section 2 the model of the structural defect 
is introduced. In section 3 the process of the plastic deformation is considered. In section 
4 the model of the structural defect is connected to the localized low-frequency modes and 
the results obtained are compared to experimental data. 
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2. The model of the structural defect 
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The regular description of some structural defect consists usually of two parts. We are to 
clarify what in fact is the core of the defect and how it interacts with the external fields. 
The speculations presented in the introduction part of this paper allow us to state that the 
structure of this core differs strongly from the average one. This means that the defect leads 
to a stress concentration and it is possible to calculate this additional elastic field. 

The idea presented in the previous section leads to two conclusions concerning this 
matter: 

(i) the defect has a localized core; 
(ii) the atomic mobility in the core has one preferred direction, i.e. the elastic field of 

the defect is anisotropic. 

The first statement means that the decrease rate of the long-range displacement field 
of the defect is the same as for the pointlike vacancies, i.e. R-’; the second implies the 
anisotropy of the elastic field. For the sake of simplicity we use here the axisymmetric 
model of the defect only-the symmetry axis is related to the preferred motion direction 
mentioned before and the violations of this symmetry in the other directions are not essential 
for this consideration. 

If writing down the equations of the theory of eiasticity 
ao- . L ’ = O  
axj 

(the indexes satisfy the Einstein rule of summation) and if presenting the solution in spherical 
components 

(U is the displacement vector) we obtain the following axisymmetric solution (independent 
of 9): 

A 
R2 

UR = -(C + cos 2 0 )  

U, = 0 (3) 
A 

U@ = ---y sin20 
R2 

where y = 2pL/(3h + 5@), A and /I are the Lam6 constants of the material. A and C are 
the constants of the defect. 

In fact, the same expression may be obtained as the long-range limit if regarding the 
action of two equal forces applied at a certain distance and acting in opposite directions. 
It is easy to see that the limit A -+ 0, AC = constant corresponds to the conventional 
vacancy. In other words, the parameter C characterizes the ‘vacancy’ part of the elastic 
field of the defect. 

For further use it is convenient to write down the expression for the displacement field 
in the component form: 

In this expression xi, i = 1,2,3, are the components of the radius vector, nixi = R’, 
CO = C + 1, d is the unit vector in the direction of the polar axis. This expression is 
invariant with respect to the choice of the local components. 
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The next step is to write down the strain tensor corresponding to this displacement field. 
The well known formula 

1 
2 E i j  = -(Ui,j + Ujj )  

gives in our case 

3 k d j  + xjdj) dkxk 
2R R 

+4(1 - y)* ( (xidj + xjdi) X i X j  ( d k X d ' , ) )  
R 2R R2 RZ 

Here &j is the Kronecker symbol. The stress tensor is expressed as follows: 

~ j j  = hSp(~ij)Sij  + 2PEij 

(5) 

Now it is possible to calculate the elastic energy of a single defect. According to well 
known relations of the theory of elasticity (see, e.g., [14]) we may obtain: 

= 2n lr R2 dR I' W sin 0 dO (7) 

,where W = $uij&ij is the energy density. The value a0 is regarded as the radius of the 
core of the defect and is of the order of the interatomic distance. 

The integration gives 

The whole energy of the defect is composed of two parts-the elastic energy calculated 
here and the energy of the core which may be roughly estimated as follows: 

This value is of the same order as the elastic energy of the the defect. In fact, it is 
impossible to determine the exact size of the core a0 and to calculate the energy of the core 
unless we have the microscopic model of the defect. For the simplest one- dimensional 
system and 2D system of equal particles interacting via the Lennard-Jones potential such 
models are described in [I]. 

For real 3D systems it is possible to construct the model of the defect for the physically 
significant case of polymer glass [15]. If taking advantage of the hierarchy of interactions 
specific for the polymer systems it tums out to be possible to establish the microscopic 
structure pattern related to the defect and to calculate the core size and energy. For the other 
cases such models have not been developed yet and we may deal with a rough estimation 
of the defect parameters only. The expression (8) determines the dependence of the elastic 
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energy of the defect on the intensity parameter A,  the scale parameter and the parameter 
CO, which, in its turn, defines the contribution of the dilatation in the field. It is possible to 
assume that the relation between the dilatation and shear energy contributions in the core of 
defect is the same as for the long-range field. Therefore for our calculation it is possible to 
use the expression (8) for the estimation of the overall energy of the defect if introducing 
the ‘renormalized‘ values of A and a0 taking into account the energy contribution of the 
core. This expression is used below. The estimation of the ‘governing parameter’ of the 
defect (the ratio Aja;) for the microscopic models mentioned above gives the value of order 
0.03-0.1 which is used in ow estimations. 

One more question of interest here is the overall dilatation caused by the defect defined. 
The calculation gives 

The averaging over all space gives zero, because ((dkxk)2/R2) = (cos2@) = 4. This 
means that the only source of the volume changes is the dilatation (or the ‘free volume’) in 
the core of defect. This additional volume may be roughly estimated as 

The energy of the elastic continuum with defects may be written as 

W = Esingre’ + Wen + Wi,, (10) 
where W,, is the energy of the extemal elastic field and Win, the energy of the interaction 
between the defects and this field. 

Now we are to calculate theenergy of the interaction of the defect with external elastic 
field. Let us state that the defect with characteristic field (5) is effected by external elastic 
field U:. The energy of the interaction is expressed by the well known formula: 

This integral may be reduced to the surface one corresponding to the B e t t i e e n  formula 
[16]: 

Win, = f U .  t(w) dQ. (12) 

Here Q is the surface of the volume V, v is the displacement vector connected with the 
external field, 

(13) t(w) = Ujj cos(v, Xi)Xj 0 

where v is the unit normal external vector to the surface, xj is the unit vectors of the local 
coordinate system. 

We choose as Q the sphere of radius a,, surrounding the defect and infinity. The external 
elastic field is supposed to be constant on this scale, i.e. the estimation 

laograd@:)l << lb:l (14) 
is supposed to be valid. In other terms, the changing scale of external field is greater than 
the characteristic size of the defect. 

Simple calculations lead us to the following result: 
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(in the local system of coordinates!) Here the axis 3 is chosen in the direction of d. 
Hence the energy of the interaction between the single defect and the external field is 

linear in the field components and depends on the field value at the point of the defect only. 
It is possible to calculate the overall energy of the interaction as a sum of the energies of 
the defects in the local fields, produced by each defect and by the external elastic loading. 

0 V Gendelman d L I  Manevitch 

3. The model of plastic deformation 

Now it is possible to construct the model of the plastic deformation in the system considered. 
The typical behaviour of most plastic systems under the external loading is presented 

in figure 1. The tension U* is referred to as the yielding l i t  of the material. Macroscopic 
yielding of this type is hardly observed in the inorganic glasses, but nevertheless the plastic 
properties may be explored in processes of microindentation etc. 

a 
0’ 

e 
Figure 1. The typical behaviour of glass under mechanical loading (stress-strain diagram) 

The characteristic features of the curve in figure 1 may be explained and predicted on 
the basis of the approach developed here. The explanation of the plasticity is based on the 
possibility of the defects appearing under external loading. The elementary act of the plastic 
deformation is thus the birth of the defect due to the loading. The basis of this proposition 
is the irreversible change in the structure and the energy dissipation in this process. The 
obvious criterion for this act to occur is the energy gain. 

We consider the case of uniaxial loading of value -ao. The energy change of this 
system with the defect is to be less than zero: 

A W Esing~c  + Wnt < 0. (16) 

This condition leads to following expression for the critical loading: 

(17) 

In order to obtain the expression for the yielding limit we are to minimize the critical loading 
(16). This minimization gives the expression for CO: 

3A(4pCi +CO !p ( I  + y )  + &y(8@ + 41) + $y2p.) 

2a; (CO + 2) 
Ucrit = 
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The yielding limit may be thus calculated as follows: 

As follows from (18), the value CO depends on the elastic constants of the material 
considered. It is dimensionless and thus it depends on the Poisson ratio U only. For most 
known glasses 0 c v c 0.5 and we may obtain -0.02 c CO c 0.08. As mentioned before, 
the value of CO is the measure of dilatation in the core of defect. We see that for the case 
of unidirectional loading the defects which preferably appear in the process of deformation 
realize in their vicinity the strain close to pure shear. This effect is well known and leads 
to appearance of the 'neck' in the zone of plastic deformation. 

One more important question is the relative disposition.of the appearing defects. Each 
defect interacts with the external field and the other present defects. In order to find the 
configuration corresponding to minimum of the elastic energy it is necessary to calculate 
the energy of interaction between the appearing defects. 

Figure 2 The respective disposition of two pointlikedefects. 

We characterize the relative position of two smctural defects in a way demonstrated.in 
figure 2. The values we introduce are the distance R and three angles defined by relations 

(20) 

c o s Y = d i . d z .  

The energy of  the^ elastic interaction between two defects may be calculated if using the 
relation (15) with the external field determined by the second defect in the local system of 
coordinates related to the first one  and^ vice versa. Of course this calculation is valid if the 
distance between the defects is much more than the defect size: 

R <<no 

In order to accomplish such calculations we need to determine the transition of the 
components of the stress tensor to another system of coordinates. Such a transition is 
governed by the well known relation [14] 

U!. t l  = uijmimj (21) 

where ui is the cosine of the angle between the old and new ith axis. After simple but 
rather lengthy calculations taking into account the relations (5), (6). (15), (20), we may 
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finally obtain the following expression for the energy of interaction between two defects: 

0 V Gendelman and L I Manevitch 

+p(4+Y)((l-3cos~41)(2yl+2LL(C01+2(1 -V)COS241)) 
+4/ rcos2~(y(1  -3cosZ+1)+2(1 - y)cos*q+ sin2$1) 
+2/r(-(c0sYc0s~1 +C0S&)2(3COl + lO(1- y )  cos&, 
+cosY(cosY cos& +cos&) 
x(3c0s41(co~ + 2 ( 1 -  y)cos2@,) 
--y cos+l+ 4y cos3 41)))) + [conjugation]. (22) 

In this equation the term [ConjugationJ denotes the same expression with ansazz $1 + 
42, 4 2  + $1, Y + -Y and is, in fact, symmetric to the first term with respect to defects 
1, 2. 

The maxima and minima of this function may be determined by solving the system of 
equations 

The solution of this system of equations demonstrates the presence of a large number of 
equilibrium states. In order to solve the problem formulated above we need only those 
states which correspond to the parallel orientations of the defects. This condition implies 
the relations $1 = R - $2, Y = 0. For the sake of simplicity we also suppose that the 
appearing defects are identical and correspond to the critical value of Co. Under these 
constraints the system (21) gives three different states of equilibrium: 

,$=O (%a) 

,$=- .. (;?ab) 
72 

The solution (24c) corresponds to the energy minimum. This result means that the appearing 
defects tend to cooperation in l i es  with angle 40 to the loading direction. 

In order to investigate the next stage of the cooperation process we are to study the 
interaction of such l i e s  assuming that they may be considered as defects of a new type. This 
transition is not straightforward because we cannot describe the formation of a continuous 
line from single pointlike defects. We thus assume that the defects are distributed in the 
line with a certain density and calculate the elastic field as follows: 

( 2 3  

where D = B(3h + 5p)/4(A + 2p), B is the linear density of the defects, R = m. 
The integration is straightforward and taking account of (4) gives 

D *  
wi = S, Ui(W dC 

(26) 
B 

wi = ;s(ri(co + 2 ( 1 - ~ ) ~ 0 ~ ~ 8 ) + ~ e ~ r s c o s e ) .  



Model of plastic deformation in 3D glass 7001 

This equation is written down in the local components connected with the line, i = 1,2, 
3 is the direction of ,the line (see figure 3), s = p(h  + 2p). The expression for the elastic 
field of the line is, naturally, similar to those of the elastic  field^ of the 2D defect. 

Figure 3. The respective disposition of two defea lines. 

The energy of interaction between such a line and the external elastic field may be 

he = n B  1,. ((CO + (1 -s))(un +uzd + f(1- S)(UII - ~ i z ) ) ~  (27) 

The calculation gives the following expression for the energy of interaction of two identical 
lines: 

calculated with the help of the procedure described above and is expressed as follows: 
m 

wj,, = - j T B I B 2  ( F ( f f { j ) )  
L sin < 

where t = 11 . 12 is the angle between these lines, L is the distance between lines, qj 
defines the respective orientation. 

For the problem considered both lines are situated with angle & to the direction of 
loading. For small 5 the orientation vectors of these lines are nearly parallel. It is obvious 
that for the case of parallel Iines the problem is reduced to the two-dimensional one. For 
this case it is proven [I]  that there exists a h e a r  configuration of defects with parallel 
orientation vectors which corresponds to the minimum of elastic energy and the energy 
of interaction is negative. For' our 3D problem the condition < = 0 corresponds to the 
singularity of the energy of interaction-this is natural due to the infinite line length. The 
factor of this singularity is proportional to the energy of interaction for the 2D problem and 
is negative for the disposition close to the energy minimum mentioned above because of the 
continuous character of all relations. This fact leads us to the conclusion that there exists 
a disposition of parallel defect lines which corresponds to the minimum of elastic energy, 
and in the plane transversal to the line direction it coincides with the linear structure known 
from the solution of the 2D problem. This means that there exists a minimum of the elastic 
energy which corresponds to the planar disposition of the structural defects. 

Finally we may conclude that the preferred way of disposition of defects in the process of 
plastic deformation is to form planes. These planes are probably connected with shear bands 
which are well known from experiments concerning the plasticity in various amorphous 
systems. 
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As mentioned above, the consideration presented here is rather tough. We suppose, 
however, that a more rigorous approach will not change the qualitative conclusions of this 
paper. 

The angle of propagation of shear bands (being the important value which may be 
evaluated on the basis of straightforward experiments) may be calculated exactly for the 
two-dimensional problem [I]. Since the defects tend to cooperate in the planes, the problem 
of definition of the angle of shear bands propagation is effectively two dimensional and the 
answer will be the same as in the paper [l]. 

4. The pointlike defects and low-frequency vibration modes 

The results presented here demonstrate the ability of the model to describe the process of 
plastic deformation in amorphous systems. The question about the assumed relationship 
between the defects introduced and the low-frequency vibration modes remains still open. 
Besides, we have certain experimental data concerning these localized modes and thus it is 
possible to check the applicability of all our methodology taking advantage of the simple 
approach based on the theory of elasticity. 

In order to elucidate this matter we may investigate the elastic model of the low- 
frequency vibrations [17]. 

We have to find the localized solutions of the dynamics equation 

where p is the average density of the system. As is well known from the theory of elasticity, 
the solution may be presented as 

U = grad Q +rot W 

where 

If sol. 

a2Q - = c y 0  
a t 2  

g these equations taking account of the symmetry conditions 
formulated for the single stationary defect we may obtain 

Q = Bl/TiZgp(kzR)(3 COS 2 0  + 1) GWf 
W, = DZ/iFZs/z(kl R )  sin 2 0  eimr 

In this equation 

iilar to those 

is the spherical Bessel function. This solution gives the growth rate of the displacement 
close to the centre of the excitation region equal to RA.  It is obviously inconsistent with 
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the model of a stationary defect because it gives stronger divergence of elastic energy in 
the core. In order to obtain a similar type of singularity we are to assume 

D = 3Ba CY = (ki/kz)5/2 

With account of these relations we finally obtain 

up = o  (34) 

We can estimate the size of the localization zone as the first zero of this solution. Such an 
estimation provides the relation between the frequency w of vibration and the wavevector 
(or localization scale) of our mode. For the range of frequencies w - 0.05Wo (here 00 
is the characteristic frequency of optical vibrations) this estimation gives the prediction of 
localization zone size of order three to four spheres of coordination. This value is rather 
close to the numerical results of [12], [13]. 

This result means that the low-frequency localized modes in glasses may be successfully 
described with the help of the theory of elasticity even close to the core zone. We may 
conclude that the structural defects connected with these modes also may be described with 
the help~of the approach based on tlie theory of elasticity. 

5. Concluding remarks 

There are several possibilities for comparing the results prescribed by the model presented 
here with the experimental data. It is worth while mentioning that the character of shear 
band growth in the mechanical model of an amorphous medium [IO] was the same as 
prescribed by our model (i.e. new defects were bom preferentially in the line formed by the 
previous ones). The angle of propagation of these bands also is explained by this theory 
(see [l] for more details). 

In order to estimate the yielding limit for the particular glass we need to determine the 
parameters of the structural defects peculiar to this material. This is possible if constructing 
the microscopic model of the structural defect. For the cases mentioned above such 
calculation may be accomplished and it is possible to estimate the value of the yielding 
limit: 

U* .-. 0.04-0.08E 

( E  is Young's modulus). This estimation turns out to be correct for most glasses. 
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